Introduction

STATISTICAL COMPUTATION USING GPU’s

Paul Baines

Department of Statistics
University of California, Davis

May 1st, 2012

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

StATISTICS & GPU’S

Overview for today:

» What is a GPU?
» How is it different from a CPU?
» How to use GPU'’s for scientific computation

» When to use GPU's for scientific computation

Credit: Lots of slides taken from the web!

Paul Baines 050112

Statistical Computation using GPU’s

BACKGROUND AND HISTORY
GPU's (graphical processing units) are specialized units designed

for rendering computer graphics.

They work very differently from CPU'’s (central processing units)
which perform the bulk of the tasks on your computer.

BACKGROUND AND HISTORY

GPU's (graphical processing units) are specialized units designed
for rendering computer graphics.

They work very differently from CPU'’s (central processing units)
which perform the bulk of the tasks on your computer.

Rendering high-definition computer graphics quickly and smoothly
requires billions of simple calculations to be performed in seconds.
GPU'’s are designed specifically for this task.

BACKGROUND AND HISTORY

GPU's (graphical processing units) are specialized units designed
for rendering computer graphics.

They work very differently from CPU'’s (central processing units)
which perform the bulk of the tasks on your computer.

Rendering high-definition computer graphics quickly and smoothly
requires billions of simple calculations to be performed in seconds.
GPU'’s are designed specifically for this task.

In recent years, there has been a great deal of progress in using
GPU'’s for more general purpose calculations, not just graphics.

NVIDIA (and their language CUDA) are at the forefront of this
effort.

BACKGROUND AND HISTORY
GPU's (graphical processing units) are specialized units designed

for rendering computer graphics.

They work very differently from CPU'’s (central processing units)
which perform the bulk of the tasks on your computer.

Rendering high-definition computer graphics quickly and smoothly
requires billions of simple calculations to be performed in seconds.

GPU'’s are designed specifically for this task.

In recent years, there has been a great deal of progress in using
GPU'’s for more general purpose calculations, not just graphics.

NVIDIA (and their language CUDA) are at the forefront of this
effort.

Before we talk specifics. . . what you need to know. ..

Introduction

TYPES OF PARALLELISM

Two main types of parallelism:

> Type |: Task Parallelism: Idea is to parallelize different tasks
that do not depend on other uncompleted tasks.
The taks being parallelized can be completely different.

Example: Computing multivariate normal densities:

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

TYPES OF PARALLELISM

Two main types of parallelism:

> Type |: Task Parallelism: Idea is to parallelize different tasks
that do not depend on other uncompleted tasks.
The taks being parallelized can be completely different.

Example: Computing multivariate normal densities:
(1) Compute Cholesky decomposition

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

TYPES OF PARALLELISM

Two main types of parallelism:

> Type |: Task Parallelism: Idea is to parallelize different tasks
that do not depend on other uncompleted tasks.
The taks being parallelized can be completely different.

Example: Computing multivariate normal densities:

(1) Compute Cholesky decomposition
(2A) Compute inverse of Cholesky factor
(2B) Compute determinant of Cholesky factor

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

TYPES OF PARALLELISM

Two main types of parallelism:

> Type |: Task Parallelism: Idea is to parallelize different tasks
that do not depend on other uncompleted tasks.
The taks being parallelized can be completely different.

Example: Computing multivariate normal densities:
(1) Compute Cholesky decomposition

(2A) Compute inverse of Cholesky factor

(2B) Compute determinant of Cholesky factor

(3) Finish computing the density

Paul Baines 050112

Statistical Computation using GPU’s

Time |::>

P1 Task 1 |Task 2| Task 3
P2 | Task 4 Task 5 |Task 6
P3 | Task 7 | Task 8 | Task 9

Task assignment across
3 processors

Task dependency graph

Credit: CS264 (N. Pinto)

Introduction

PARALLELISM II: DATA PARALLELISM

GPU's are not useful for task parallelism, for are useful for a
different kind of parallelism: data parallelism.

Type II: Data Parallelism:
Perform the same task on multiple pieces of data.

Examples:

» Matrix multiplication: same task (multiplication), on multiple
pieces of data (matrix elements)

» Numerical integration: same task (function evaluation), on
multiple pieces of data (integration grid)

Paul Baines 050112

Statistical Computation using GPU’s

Emo[:|

oM (=]
“[mm]E}
OEE | |
mEo[s]

m=E1E

Data{
p

Kernel

Credit: CS264 (N. Pinto)

CPU vs. GPU

ALU ALU
Control

ALU ALU

CPU GPU

Credit: CS264 (N. Pinto)

ALU: Arithmetic Logic Unit (thing that does calculations!)
CPU: Lots of fast memory (cache), few ALUs
GPU: Little fast memory, lots of ALUs

Some definitions

¢ Kernel

— GPU program that runs on a thread grid
¢ Thread hierarchy

- Grid : a set of blocks

—Block : a set of warps

—Warp : a SIMD group of 32 threads

— Grid size * block size = total # of threads

Grid
Kernel Block 1 Block 2 Block n
warp warp warp warp warp

m:alalkek

Credit: CS264 (N. Pinto)

10-Series Architecture

® 240 thread processors execute kernel threads

® 30 multiprocessors, each contains

® 38 thread processors
® One double-precision unit
® Shared memory enables thread cooperation

Multiprocessor

Processars

[
l:l l:l Thread
[
=

red
=

© 2050 Dl Camration, [©. LalVila1T

CUDA Kernels and Threads

® Parallel portions of an application are executed on
the device as kernels
® One kernel is executed at a time
® Many threads execute each kernel

@ Differences between CUDA and CPU threads
® CUDA threads are extremely lightweight
® Very little creation overhead
® |nstant switching
® CUDA uses 1000s of threads to achieve efficiency
® Multi-core CPUs can use only a few

Definitions
Device = GPU

Host = CPU
Kernel = function that runs on the device

© 2008 IR Corpurarin GANVIDIA

Arrays of Parallel Threads

® A CUDA kernel is executed by an array of threads
® All threads run the same code

® Each thread has an ID that it uses to compute memory
addresses and make control decisions

threadID nnnn
ARRRNRNNY
))

///X////

\\\\\\\\
Vv ey

© 2050 Dl Camration, SANvIDIA

Thread Batching

® Kernel launches a grid of thread blocks
® Threads within a block cooperate via shared memory
® Threads within a block can synchronize
® Threads in different blocks cannot cooperate

® Allows programs to transparently scale to
different GPUs

Thread Block N-1

Shared Memory Shared Memory Shared Memory

© 2050 Dl Camration, [©. LalVila1T

Introduction

Low-LEVEL PROGRAMMING FOR GPU’s

— Languages:
» CUDA :: http://www.nvidia.com/object/cuda_home_new.html

» OpenCL :: http://www.khronos.org/opencl/

» Which? http://wiki.tiker.net/CudaVsOpenCL

Paul Baines 050112

Statistical Computation using GPU’s

http://www.nvidia.com/object/cuda_home_new.html
http://www.khronos.org/opencl/
http://wiki.tiker.net/CudaVsOpenCL

Introduction

ABouTr CUDA

CUDA is. ..

Paul Baines

Introduction

ABouTr CUDA

CUDA is. ..
» a bunch of C/C++ libraries allowing the coder to use the GPU

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

ABouTr CUDA

CUDA is. ..
» a bunch of C/C++ libraries allowing the coder to use the GPU

» a fine-grain, low-level language (user controls all memory
management, synchronicity etc)

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

ABouTr CUDA

CUDA is. ..
» a bunch of C/C++ libraries allowing the coder to use the GPU

» a fine-grain, low-level language (user controls all memory
management, synchronicity etc)

» for NVIDIA GPU'’s only (will not work on AMD GPU's)

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

ABouTr CUDA

CUDA is. ..
» a bunch of C/C++ libraries allowing the coder to use the GPU

» a fine-grain, low-level language (user controls all memory
management, synchronicity etc)

» for NVIDIA GPU'’s only (will not work on AMD GPU's)

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

ABouTr CUDA

CUDA is. ..
» a bunch of C/C++ libraries allowing the coder to use the GPU
» a fine-grain, low-level language (user controls all memory
management, synchronicity etc)
» for NVIDIA GPU'’s only (will not work on AMD GPU's)

There are also new higher-level interfaces to CUDA that do much
of the dirty work for you. ..

Paul Baines 050112

Statistical Computation using GPU’s

ExamMpPLE CUDA PROGRAM

My example, modified from some code on the NVIDIA forums:

See CUDA_example.cu

Compile with:

nvcc CUDA_example.cu -use_fast_math -o cosine.out
Run with:

./cosine.out

Introduction

GPU-ACCELERATED LIBRARIES

» Thrust (C++ STL-type library)

» CULA (CUDA implementation of LAPACK and BLAS, dense
& sparse by Photonics)

» cuBLAS (CUDA implementation of BLAS by NVIDIA)

» cuSPARSE (CUDA implementation for sparse matrices by
NVIDIA)

» cuRAND (CUDA random number generation by NVIDIA)
» CUDA Math Library (by NVIDIA)

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

OTHER INTERFACES TO GPUs

v

PyCUDA :: http://documen.tician.de/pycuda/

v

PyOpenCL :: http://documen.tician.de/pyopencl/

v

R Packages:
» gputools

OpenACC (essentially an OpenMP for GPU's)
Other?

v

v

Paul Baines 050112

Statistical Computation using GPU’s

http://documen.tician.de/pycuda/
http://documen.tician.de/pyopencl/

Compiling C with CUDA Applications

void serial_function(.) {

void other_function(int ...) {

}...

void saxpy_serial(float ...) {
for (int 1 = 0; i < n; ++i)
yLil = a=x[i] + y[il;
}

void main() {
float x;
saxpy_serial(..);

NWIZIA Confidentia

Modify into
Parallel
CUDA code

C CUDA
Key Kernels

54

1

CUDA object
files

—
Linker

Rest of C
Application

+
CPU Compiler

Il

CPU object
files

l

Kernel Memory Access

® Per-thread
24—» On-chip
Thread

= NETEINENEOE Off-chip, uncached

® Per-block

Block 2 Shared 'En-chip, small
pmq Memory ast

® Per-device

L Persistent across

l et R —> T B

CUDA Variable Type Qualifiers

Variable declaration Memory Scope | Lifetime
int var; register thread | thread

int array var([10]; local thread thread

__shared__ int shared var; shared block block

__device_ int global_var; global grid | application

__constant__ int constant_var; constant grid | application

® “automatic” scalar variables without qualifier reside
in a register
® compiler will spill to thread local memory
“automatic” array variables without qualifier reside
in thread-local memory

& 2002 NVIDIA Corporatien

CUDA Variable Type Performance

Variable declaration Memory Penalty
int var; register 1x

int array wvar[10]; local

__shared int shared var; shared 1

__deviee int global var; global

_ constant_ int constant_var; constant X

scalar variables reside in fast, on-chip registers
shared variables reside in fast, on-chip memories

thread-local arrays & global variables reside in
uncached off-chip memory
constant variables reside in cached off-chip memory

& 2002 NVIDIA Corporatien

CUDA Variable Type Scale

Variable declaration Instances Visibility
int var; 100,000s 1

int array_var[10]; 100,000s 1
__shared__ int shared var; 100s 100s

__deviee int global var; 1 100,000s

__constant__ int constant_var; 1 100,000s

100Ks per-thread variables, R/W by 1 thread

100s shared variables, each R/W by 100s of threads
1 global variable is R/W by 100Ks threads

1 constant variable is readable by 100Ks threads

& 2002 NVIDIA Corporatien

GPU Total Time, m = 100

500.0
[copy back to host
I calc
B copy to device
8750 ~ Tmmmmm—,
£
BDB0Q e
]
>
o
[0]
ABBLD -ooememene L
0 j . . . I
200 2,000 20,000 200,000 2,000,000 20,000,000
n
25

Thursday, February 24, 2011

Condr. CCOCEA IN D e\

Introduction

PERSPECTIVE ON GPU’s

What tasks are they good for?

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

PERSPECTIVE ON GPU’s

What tasks are they good for?

Numerical integration (nearly always)

(Very) slow iteration MCMC (use within-iteration parallelism)
‘Simple’ bootstraps

Particle Filtering (Sequential Monte Carlo)

(Extremely difficult) brute force optimization

(Very) Large matrix calculations

© 0 0 o o o 0

Single-use applications

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

PERSPECTIVE ON GPU’s

What tasks are they not good for?

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

PERSPECTIVE ON GPU’s

What tasks are they not good for?

® Fast iteration MCMC

® ‘'Difficult’ bootstraps

® (Most) optimization problems

® Methodological work (portable code)

® Any problem that is not worth the additional effort. ..

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

RESOURCES

http
http
http
http
http
http

vVvyVvYyVvyYVvyy

1/ /www.cs264.

org/

://www.nvidia.com/object/cuda_home_new.html

://developer.
://developer.
://developer.
://developer.

Getting started:
» Find a CUDA-enabled computer and install CUDA first!
»> NVIDIA GPU Computing SDK has lots of (rich) examples

» Courses found above have lots of nice labs

Paul Baines

nvidia.com/cuda-downloads
nvidia.com/nvidia-gpu-computing-documentation
nvidia.com/cuda-training#2

nvidia.com/getting-started-parallel-computing

050112

Sta al Computati

http://www.cs264.org/
http://www.nvidia.com/object/cuda_home_new.html
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/nvidia-gpu-computing-documentation
http://developer.nvidia.com/cuda-training#2
http://developer.nvidia.com/getting-started-parallel-computing

Introduction

APPENDIX: INSTALLATION (MAC & LINUX)

» Install the CUDA driver

» Install the CUDA Toolkit (sets up compiler, libraries etc.)

» Add environment variables to ~/.bash_profile:

export PATH=/usr/local/cuda/bin:$PATH
export DYLD_LIBRARY_PATH=/usr/local/cuda/lib:$DYLD_LIBRARY_PATH

» Install the CPU Computing SDK (lots of code examples)
» Verify the install with:

kextstat | grep -i cuda

nvcc -V

cd /Developer/GPU\ Computing/C/bin/darwin/release
./deviceQuery

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

CUDA oN My MACBOOK Pro (10.6.8)

Device 0: "GeForce 320M"

CUDA Driver Version / Runtime Version 4.1/ 4.1

CUDA Capability Major/Minor version number: 1.2

Total amount of global memory: 253 MBytes (265027584 bytes)

(6) Multiprocessors x (8) CUDA Cores/MP: 48 CUDA Cores

GPU Clock Speed: 0.95 GHz

Memory Clock rate: 1064.00 Mhz

Memory Bus Width: 128-bit

Max Texture Dimension Size (x,y,z) 1D=(8192), 2D=(65536,32768), 3D=(2048,2048,2048)
Max Layered Texture Size (dim) x layers 1D=(8192) x 512, 2D=(8192,8192) x 512
Total amount of constant memory: 65536 bytes

Total amount of shared memory per block: 16384 bytes

Total number of registers available per block: 16384

Warp size: 32

Maximum number of threads per block: 512

Maximum sizes of each dimension of a block: 512 x 512 x 64

Maximum sizes of each dimension of a grid: 65535 x 65535 x 1

Maximum memory pitch: 2147483647 bytes

Texture alignment: 256 bytes

Concurrent copy and execution: Yes with 1 copy engine(s)

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 4.1, CUDA Runtime Version = 4.1, NumDevs = 1, De

Paul Baines

Statistical Computation using GPU’s

Introduction

TESTING CUDA

./bandwidthTest

Device 0: GeForce 320M
Quick Mode

Host to Device Bandwidth, 1 Device(s), Paged memory
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 581.1

Device to Host Bandwidth, 1 Device(s), Paged memory
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 609.9

Device to Device Bandwidth, 1 Device(s)
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 5965.2

[bandwidthTest] test results...
PASSED

Paul Baines 050112

Sta al Computati

