
Introduction

Statistical Computation using GPU’s

Paul Baines

Department of Statistics
University of California, Davis

May 1st, 2012

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

Statistics & GPU’s

Overview for today:

I What is a GPU?

I How is it different from a CPU?

I How to use GPU’s for scientific computation

I When to use GPU’s for scientific computation

Credit: Lots of slides taken from the web!

Paul Baines 050112

Statistical Computation using GPU’s

Background and History

GPU’s (graphical processing units) are specialized units designed
for rendering computer graphics.

They work very differently from CPU’s (central processing units)
which perform the bulk of the tasks on your computer.

Rendering high-definition computer graphics quickly and smoothly
requires billions of simple calculations to be performed in seconds.
GPU’s are designed specifically for this task.

In recent years, there has been a great deal of progress in using
GPU’s for more general purpose calculations, not just graphics.

NVIDIA (and their language CUDA) are at the forefront of this
effort.

Before we talk specifics. . . what you need to know. . .

Background and History

GPU’s (graphical processing units) are specialized units designed
for rendering computer graphics.

They work very differently from CPU’s (central processing units)
which perform the bulk of the tasks on your computer.

Rendering high-definition computer graphics quickly and smoothly
requires billions of simple calculations to be performed in seconds.
GPU’s are designed specifically for this task.

In recent years, there has been a great deal of progress in using
GPU’s for more general purpose calculations, not just graphics.

NVIDIA (and their language CUDA) are at the forefront of this
effort.

Before we talk specifics. . . what you need to know. . .

Background and History

GPU’s (graphical processing units) are specialized units designed
for rendering computer graphics.

They work very differently from CPU’s (central processing units)
which perform the bulk of the tasks on your computer.

Rendering high-definition computer graphics quickly and smoothly
requires billions of simple calculations to be performed in seconds.
GPU’s are designed specifically for this task.

In recent years, there has been a great deal of progress in using
GPU’s for more general purpose calculations, not just graphics.

NVIDIA (and their language CUDA) are at the forefront of this
effort.

Before we talk specifics. . . what you need to know. . .

Background and History

GPU’s (graphical processing units) are specialized units designed
for rendering computer graphics.

They work very differently from CPU’s (central processing units)
which perform the bulk of the tasks on your computer.

Rendering high-definition computer graphics quickly and smoothly
requires billions of simple calculations to be performed in seconds.
GPU’s are designed specifically for this task.

In recent years, there has been a great deal of progress in using
GPU’s for more general purpose calculations, not just graphics.

NVIDIA (and their language CUDA) are at the forefront of this
effort.

Before we talk specifics. . . what you need to know. . .

Introduction

Types of Parallelism

Two main types of parallelism:

I Type I: Task Parallelism: Idea is to parallelize different tasks
that do not depend on other uncompleted tasks.
The taks being parallelized can be completely different.

Example: Computing multivariate normal densities:

(1) Compute Cholesky decomposition
(2a) Compute inverse of Cholesky factor
(2b) Compute determinant of Cholesky factor
(3) Finish computing the density

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

Types of Parallelism

Two main types of parallelism:

I Type I: Task Parallelism: Idea is to parallelize different tasks
that do not depend on other uncompleted tasks.
The taks being parallelized can be completely different.

Example: Computing multivariate normal densities:

(1) Compute Cholesky decomposition

(2a) Compute inverse of Cholesky factor
(2b) Compute determinant of Cholesky factor
(3) Finish computing the density

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

Types of Parallelism

Two main types of parallelism:

I Type I: Task Parallelism: Idea is to parallelize different tasks
that do not depend on other uncompleted tasks.
The taks being parallelized can be completely different.

Example: Computing multivariate normal densities:

(1) Compute Cholesky decomposition
(2a) Compute inverse of Cholesky factor
(2b) Compute determinant of Cholesky factor

(3) Finish computing the density

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

Types of Parallelism

Two main types of parallelism:

I Type I: Task Parallelism: Idea is to parallelize different tasks
that do not depend on other uncompleted tasks.
The taks being parallelized can be completely different.

Example: Computing multivariate normal densities:

(1) Compute Cholesky decomposition
(2a) Compute inverse of Cholesky factor
(2b) Compute determinant of Cholesky factor
(3) Finish computing the density

Paul Baines 050112

Statistical Computation using GPU’s

Credit: CS264 (N. Pinto)

Introduction

Parallelism II: Data Parallelism

GPU’s are not useful for task parallelism, for are useful for a
different kind of parallelism: data parallelism.

Type II: Data Parallelism:
Perform the same task on multiple pieces of data.

Examples:

I Matrix multiplication: same task (multiplication), on multiple
pieces of data (matrix elements)

I Numerical integration: same task (function evaluation), on
multiple pieces of data (integration grid)

Paul Baines 050112

Statistical Computation using GPU’s

Credit: CS264 (N. Pinto)

CPU vs. GPU

Credit: CS264 (N. Pinto)

ALU: Arithmetic Logic Unit (thing that does calculations!)

CPU: Lots of fast memory (cache), few ALUs

GPU: Little fast memory, lots of ALUs

Credit: CS264 (N. Pinto)

Introduction

Low-Level Programming for GPU’s

– Languages:

I CUDA :: http://www.nvidia.com/object/cuda_home_new.html

I OpenCL :: http://www.khronos.org/opencl/

I Which? http://wiki.tiker.net/CudaVsOpenCL

Paul Baines 050112

Statistical Computation using GPU’s

http://www.nvidia.com/object/cuda_home_new.html
http://www.khronos.org/opencl/
http://wiki.tiker.net/CudaVsOpenCL

Introduction

About CUDA

CUDA is. . .

I a bunch of C/C++ libraries allowing the coder to use the GPU

I a fine-grain, low-level language (user controls all memory
management, synchronicity etc)

I for NVIDIA GPU’s only (will not work on AMD GPU’s)

There are also new higher-level interfaces to CUDA that do much
of the dirty work for you. . .

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

About CUDA

CUDA is. . .

I a bunch of C/C++ libraries allowing the coder to use the GPU

I a fine-grain, low-level language (user controls all memory
management, synchronicity etc)

I for NVIDIA GPU’s only (will not work on AMD GPU’s)

There are also new higher-level interfaces to CUDA that do much
of the dirty work for you. . .

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

About CUDA

CUDA is. . .

I a bunch of C/C++ libraries allowing the coder to use the GPU

I a fine-grain, low-level language (user controls all memory
management, synchronicity etc)

I for NVIDIA GPU’s only (will not work on AMD GPU’s)

There are also new higher-level interfaces to CUDA that do much
of the dirty work for you. . .

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

About CUDA

CUDA is. . .

I a bunch of C/C++ libraries allowing the coder to use the GPU

I a fine-grain, low-level language (user controls all memory
management, synchronicity etc)

I for NVIDIA GPU’s only (will not work on AMD GPU’s)

There are also new higher-level interfaces to CUDA that do much
of the dirty work for you. . .

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

About CUDA

CUDA is. . .

I a bunch of C/C++ libraries allowing the coder to use the GPU

I a fine-grain, low-level language (user controls all memory
management, synchronicity etc)

I for NVIDIA GPU’s only (will not work on AMD GPU’s)

There are also new higher-level interfaces to CUDA that do much
of the dirty work for you. . .

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

About CUDA

CUDA is. . .

I a bunch of C/C++ libraries allowing the coder to use the GPU

I a fine-grain, low-level language (user controls all memory
management, synchronicity etc)

I for NVIDIA GPU’s only (will not work on AMD GPU’s)

There are also new higher-level interfaces to CUDA that do much
of the dirty work for you. . .

Paul Baines 050112

Statistical Computation using GPU’s

Example CUDA Program

My example, modified from some code on the NVIDIA forums:

See CUDA_example.cu

Compile with:

nvcc CUDA_example.cu -use_fast_math -o cosine.out

Run with:

./cosine.out

Introduction

GPU-accelerated Libraries

I Thrust (C++ STL-type library)

I CULA (CUDA implementation of LAPACK and BLAS, dense
& sparse by Photonics)

I cuBLAS (CUDA implementation of BLAS by NVIDIA)

I cuSPARSE (CUDA implementation for sparse matrices by
NVIDIA)

I cuRAND (CUDA random number generation by NVIDIA)

I CUDA Math Library (by NVIDIA)

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

Other Interfaces to GPUs

I PyCUDA :: http://documen.tician.de/pycuda/

I PyOpenCL :: http://documen.tician.de/pyopencl/

I R Packages:
I gputools

I OpenACC (essentially an OpenMP for GPU’s)

I Other?

Paul Baines 050112

Statistical Computation using GPU’s

http://documen.tician.de/pycuda/
http://documen.tician.de/pyopencl/

Credit: CS264 (N. Pinto)

Introduction

Perspective on GPU’s

What tasks are they good for?

, Numerical integration (nearly always)

, (Very) slow iteration MCMC (use within-iteration parallelism)

, ‘Simple’ bootstraps

, Particle Filtering (Sequential Monte Carlo)

, (Extremely difficult) brute force optimization

, (Very) Large matrix calculations

, Single-use applications

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

Perspective on GPU’s

What tasks are they good for?

, Numerical integration (nearly always)

, (Very) slow iteration MCMC (use within-iteration parallelism)

, ‘Simple’ bootstraps

, Particle Filtering (Sequential Monte Carlo)

, (Extremely difficult) brute force optimization

, (Very) Large matrix calculations

, Single-use applications

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

Perspective on GPU’s

What tasks are they not good for?

/ Fast iteration MCMC

/ ‘Difficult’ bootstraps

/ (Most) optimization problems

/ Methodological work (portable code)

/ Any problem that is not worth the additional effort. . .

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

Perspective on GPU’s

What tasks are they not good for?

/ Fast iteration MCMC

/ ‘Difficult’ bootstraps

/ (Most) optimization problems

/ Methodological work (portable code)

/ Any problem that is not worth the additional effort. . .

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

Resources

I http://www.cs264.org/

I http://www.nvidia.com/object/cuda_home_new.html

I http://developer.nvidia.com/cuda-downloads

I http://developer.nvidia.com/nvidia-gpu-computing-documentation

I http://developer.nvidia.com/cuda-training#2

I http://developer.nvidia.com/getting-started-parallel-computing

Getting started:

I Find a CUDA-enabled computer and install CUDA first!

I NVIDIA GPU Computing SDK has lots of (rich) examples

I Courses found above have lots of nice labs

Paul Baines 050112

Statistical Computation using GPU’s

http://www.cs264.org/
http://www.nvidia.com/object/cuda_home_new.html
http://developer.nvidia.com/cuda-downloads
http://developer.nvidia.com/nvidia-gpu-computing-documentation
http://developer.nvidia.com/cuda-training#2
http://developer.nvidia.com/getting-started-parallel-computing

Introduction

Appendix: Installation (Mac & Linux)

I Install the CUDA driver

I Install the CUDA Toolkit (sets up compiler, libraries etc.)
I Add environment variables to ∼/.bash profile:

export PATH=/usr/local/cuda/bin:$PATH

export DYLD_LIBRARY_PATH=/usr/local/cuda/lib:$DYLD_LIBRARY_PATH

I Install the CPU Computing SDK (lots of code examples)

I Verify the install with:

kextstat | grep -i cuda

nvcc -V

cd /Developer/GPU\ Computing/C/bin/darwin/release

./deviceQuery

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

CUDA on my Macbook Pro (10.6.8)

Device 0: "GeForce 320M"

CUDA Driver Version / Runtime Version 4.1 / 4.1

CUDA Capability Major/Minor version number: 1.2

Total amount of global memory: 253 MBytes (265027584 bytes)

(6) Multiprocessors x (8) CUDA Cores/MP: 48 CUDA Cores

GPU Clock Speed: 0.95 GHz

Memory Clock rate: 1064.00 Mhz

Memory Bus Width: 128-bit

Max Texture Dimension Size (x,y,z) 1D=(8192), 2D=(65536,32768), 3D=(2048,2048,2048)

Max Layered Texture Size (dim) x layers 1D=(8192) x 512, 2D=(8192,8192) x 512

Total amount of constant memory: 65536 bytes

Total amount of shared memory per block: 16384 bytes

Total number of registers available per block: 16384

Warp size: 32

Maximum number of threads per block: 512

Maximum sizes of each dimension of a block: 512 x 512 x 64

Maximum sizes of each dimension of a grid: 65535 x 65535 x 1

Maximum memory pitch: 2147483647 bytes

Texture alignment: 256 bytes

Concurrent copy and execution: Yes with 1 copy engine(s)

...

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 4.1, CUDA Runtime Version = 4.1, NumDevs = 1, Device = GeForce 320M

Paul Baines 050112

Statistical Computation using GPU’s

Introduction

Testing CUDA

./bandwidthTest

Device 0: GeForce 320M

Quick Mode

Host to Device Bandwidth, 1 Device(s), Paged memory

Transfer Size (Bytes) Bandwidth(MB/s)

33554432 581.1

Device to Host Bandwidth, 1 Device(s), Paged memory

Transfer Size (Bytes) Bandwidth(MB/s)

33554432 609.9

Device to Device Bandwidth, 1 Device(s)

Transfer Size (Bytes) Bandwidth(MB/s)

33554432 5965.2

[bandwidthTest] test results...

PASSED

Paul Baines 050112

Statistical Computation using GPU’s

